

FROM TREE TO MODERN CROSS-LAMINATED WOOD HOUSES

Jonas SHARIFI

A bit about me...

- B.Sc. at Jönköping University
- M.Sc. at Luleå University of Technology
- PhD. at Luleå University of Technology
- Nock Massiva Trähus

Luleå University of Technology

LTU

- CT-Scanning
- Wood welding
- Densification of wood

Common Wood Species

From tree to modern cross-laminated wood houses – Ludvika 19.October.2022

- Norway spruce (*Picea abies*)
- Scotsh pine (*Pinus sylvestris*)
- Birch (*Betula*)

• ...

- Norway spruce (*Picea abies*)
- Scotsh pine (*Pinus sylvestris*)
- Birch (*Betula*)
- ...
- In Sweden: 45

- Norway spruce (*Picea abies*)
- Scotsh pine (Pinus sylvestris)
- Birch (*Betula*)
- ...
- In Sweden: 45

No. of species in the World:

- Norway spruce (*Picea abies*)
- Scotsh pine (Pinus sylvestris)
- Birch (*Betula*)
- ...
- In Sweden: 45

No. of species in the World:

• At least 64 000!!

Uses of Wood

Microscopic View of Wood Species

Softwood

Hardwood

Macroscopic View of wood

Reaction Wood

How Wood Is Cut

Wood Deformation

Wood Deformation

Green sorting (green timber):

• Thickness, width, (quality)

Green sorting (green timber):

• Thickness, width, (quality)

Dry wood sorting:

- Knots (number, size, type, shape, location)
- Fissures (drying checks, ring shakes, splits)
- Wane
- Resin pockets, scars, slope of grain, top rupture, compression wood
- Warp (bow, cup, twist)

	C14	C18	C24	C30	C35
Bending parallel	14	18	24	30	35
Tension parallel	7,2	10	14,5	19	22,5
Tension perpendicular	0,4	0,4	0,4	0,4	0,4
Compression parallel	16	18	21	24	25
Compression perpendicular	2,0	2,2	2,5	2,7	2,7
Shear	3,0	3,4	4,0	4,0	4,0
5 percentile MOE parallel bending	4700	6000	7400	8000	8700
Mean MOE parallel bending	7000	9000	11000	12000	13000
Mean MOE perpendicular	230	300	370	400	430
Mean shear modulus	440	560	690	750	810
5 percentile density	290	320	350	380	390
Mean density	350	380	420	460	470

<u>Crosswise layers of</u>
 <u>boards</u>

- Crosswise layers of boards
- <u>Main laminate</u> <u>direction</u>

- Crosswise layers of boards
- Main laminate direction
- <u>Odd/even-numbered</u>
 <u>layer</u>

- Crosswise layers of boards
- Main laminate direction
- Odd/even-numbered layer
- <u>Glued/non-glued</u>
 <u>side edges</u>

- Crosswise layers of boards
- Main laminate direction
- Odd/even-numbered layer
- Glued/non-glued side edges
- <u>Different materials</u>

Construction of CLT

Main species in the market:

- Softwood
 - Spruce
 - Larch
 - Fir
 - Douglas fir
 - Pine
- Hardwood
 - Birch
 - Less common due to machining difficulties
 - More expensive
- (Bamboo)

Grading of boards used for CLT

- C24 grade boards
- Increasing use of lower graded boards (C14)

From tree to modern cross-laminated wood houses – Ludvika 19.October.2022

• Mindlin–Reissner plate theory

From tree to modern cross-laminated wood houses – Ludvika 19.October.2022

History

History of wooden buildings:

- 1874
- (1888)
- 1994

• 1355 - 1356

History

History of CLT:

- 1994 Founded
- 2000s Wider usage in Europe
- 2003 Martinsons in Bygdsiljum
- 2019 Stora Enso and Södra
- 2020 Setra
- 2022 Common method of construction in Sweden, Norway, Germany, Austria, Switzerland, UK and North America.

Advantages of CLT:

- Sustainable
- Easier on site (pre-fabricated)
- Faster installation
- Cleaner construction site
- Lighter weight, cheaper foundation
- Thermal properties, good insulator
- Fire resistant

Disadvantages of CLT:

- More expensive than steel and concrete
- (building code restrictions)
- Increasing the cost of electrical, plumbing etc. (lack of cavety)
- Less flexibility during renovations

Some disadvantages may disappear due to an increased market of CLT.

Fire and CLT:

- Industrial flame retardant treatment
- Add protection on the wood
- Charring rate = 0,6 0,7 mm/min
- A layer of char protects and maintains the strength of the wood inside

Sustainability of CLT:

- Eco-friendly
- Renewable wood
- Can reduce carbon emissions up to 80% (compared to concrete)

CLT producers in Sweden:

- Holmen (earlier Martinsons) 22 000 m³
- Setra 100 000 m³
- Stora Enso (largest in Europe) 100 000 m³ (270 000 m³ in Europe)
- Södra 14 000 m³ (140 000 m³)

T2, Skellefteå, 2018

- 9 m
- 2 storeys
- Concrete, glulam and CLT

The Tree, Bergen, 2015

- 49 m
- 14 storeys
- Glulam truss work + concrete on top floor

The University of British Columbia, 2017 (Brock Commons)

- 53 m
- 18 storeys
- 70 days to complete the structure
- Steel, concrete and wood

Sara Kulturhus, Skellefteå, 2021

- 75 m
- 20 storeys
- Sweden's tallest wooden building
- 13 500 flights Stockholm New York
- Concrete, glulam and CLT

HoHo, Vienna, 2019

- 84 m
- 24 storeys
- 75% wood

Mjøstårne, Brumunddal, 2019

- 85,4 m
- 18 storeys
- World tallest wooden building
- Gluelam structure, CLT for stiffening

The Rocket&Tigerli Tower, Winterthur (Zurich)

- 100 m
- Will be completed in 2026
- ≈25 storeys

W350 Tower, Tokyo, 2041

- 350 m
- 2026 planned to start
- 70 storeys

Future of CLT:

- Is promising
- It is called "the concrete of the future"
- Durable and possible to compare with reinforced concrete
 - Lightweight
 - As durable as concrete
 - Good insulator (compared to concrete and steel)

Nock Massiva Trähus:

- Fast-growing wooden house manufacturer
- One of few industrilised apartment buildings producers in CLT
- High prefabrication degree

Nock Factory, Älvängen

On Site

Mounting of Modules

Godisfabriken, Gävle

Fiolen, Norrköping

- 4 storeys
- 40 apartments

Näsbyholm, Härad

- 16 buildings
- 2 storeys
- 144 apartments

Biljetten, Malmö

- 12 Terraced houses (Radhus)
- 4 storeys

Thanks for your time!

From tree to modern cross-laminated wood houses – Ludvika 19.October.2022