

GRAPHENE SEMINAR VBIK, 14 MAY 2018

Ag-graphene oxide composites for electric contact applications

Anna M. Andersson, Principal Scientist @ ABB AB, Corporate Research, Västerås, Sweden

Outline

Project team

Product example: Tap-changers for transformers

Sliding electrical contacts

Tribological properties of GRMs

Ag-GRM composites for sliding contact applications – benefits and challenges

Concluding remarks

Graphene oxide - a new lubricant in industrial applications

Project start Sept 2015

Uppsala University

UNIVERSITET

Dept. of Chemistry – Ångström Materials Chemistry and analysis

Prof. U. Jansson Res. eng.

Postdoc M. Taher P. Berastegui

ABB Corporate Research and BU Transformer Components

PhD student F. Mao

Dept. of Engineering Science Tribomaterials

PhD student

E. Larsson

Prof. Postdoc H. Grennberg L. Tahershamsi

Dept. of Chemistry – BMC

Graphene materials and function

+ Per Krainer (BU) Henrik Hillborg (CRC) Markus Hoidis (CRC)

Prof. Å. Kassman-Rudolphi

External frameworks / funding source

Prof. U. Wiklund

a R II

©ABB May 17, 2018

Electrical contacts

Key components in the power grid

Stationary Contacts

- Plug-in connectors
- Low Voltage Switchgear
- Medium Voltage Switchgear
- Terminals
- Bushings
- High Voltage Substations
- Power Electronic Packaging
- Varistors / Surge Arresters
- Cable joints

Sliding Contacts

- Tap-changers
- Breakers
- Disconnectors
- Brushes
 - Electrical Motors
 - Robot Applications
 - Sensors

Tap-changer contact

Breaking Contacts

- Circuit breakers (HV, MV, LV)
- Generator circuit breakers
- Disconnectors
- Vacuum interrupters
 - Contactors
 - Relays

©ABB

May 17, 2018

©ABB

Working conditions: Contact loads up to 80N, contact speeds ca. 3 m/s, impact, vibrations, warm transformer oil with varying temp. (average ca. 80°C), life demand >1 M operations

Sliding electrical contacts for power applications

Ag – Ag contacts

- Low resistivity
- Low contact resistance
- High oxidation resistance
- Adhesive wear, cladding
- High friction
 - Dry conditions: μ 1-1,5
 - Greased conditions: μ 0,08-0.2
 - In transformer oil: μ 0,3-0,9

Sliding electrical contacts for power applications

Examples of potential effects by improving tribological properties

- 1. Simpler and smaller designs due to reduced and more stable friction
- 2. Use of higher contact pressure, leading to lower resistive losses
- 3. Increased life-time (# of operations) of the device
- 4. Completely dry, self-lubricated systems in e.g. dry tap-changers/ transformers, lubricant-free disconnectors, breakers and switches → safer and more thermally stable
- 5. Reduction in particle generation due to less wear, thus minimizing risk for electrical overcharge
- 6. Cost reduction due to lower material costs

Sliding electrical contacts

Good contact:	1 - 5 % of the interface is conducting
Bad contact:	< 1 ‰ of the interface is conducting

©ABB May 17, 2018 | Slide 8

Sliding electrical contacts

Tribo-film formation

Contact 1% conductive area

Good contact:	1-5 % of the interface is conducting
Bad contact:	< 1 ‰ of the interface is conducting

©ABB May 17, 2018 | Slide 9

Sliding electrical contacts for power applications

GRMs as potential additive in Ag-based contacts

Why GRMs?

- Potentially excellent electrical and thermal properties
- High mechanical strength
- Good tribological properties in humid <u>and</u> dry environments (unlike graphite) [1]
- Chemical and thermal stability, corrosion protection
- Designability (GO)
- 2D material \rightarrow thin

Ideal candidate for handling high loads, high speeds, high currents, high temperatures, different chemical environments etc.

©**ABB** May 17, 2018

| Slide 10 1. D. Berman, A. Erdemir, A.V. Sumant, 'Few layer graphene to reduce wear and friction on sliding steel surfaces', Carbon, 54 (2013) 454-459.

Tribological properties of GRMs

1. F. Mao, U. Wiklund, A.M. Andersson, U. Jansson, 'Graphene as a Lubricant on Ag for Electrical Contact Applications', J. Mater. Sci., 50 (2015) 6518.

©ABB

Tribological properties of GRMs

May 17, 2018

Ag:GO composite sliding contact material for heavy-duty switching applications

- GO lower cost, more industrially viable
- Composites enable continuous supply of GO (cf. gradual removal of topcoat)
- Possibility to build up a very thin tribofilm with few-layer GO
- · Electrical properties of Ag pref. not interfered with
- Possibility for functionalization of GO to tune Ag-matrix and graphene sheet interaction

New protocol for a well-dispersed Ag/GO composite material Cleaning and mixing process of Ag nanoparticles and GO flakes

Cleaning GO

Sintering of Ag/GO composites

Pressing of the Ag/GO powder into a greenbody composite

Sintering at specified temperature, time and atmosphere

Wet mixing process of Ag nanoparticles and GO flake:

Ag nanoparticles/ GO flakes/ Solvent Solvent

Ag/GO nanocomposite powder

Sintered Ag/rGO composite

©**ABB** May 17, 2018

Slide 14

Flake distribution before and after cleaning

©ABB May 17, 2018

Slide 15

Powder dispersion Ag:GO powder mixture

Sintering of Ag:GO composites

©ABB May 17, 2018

Dry friction of Ag:GO composites

Pin-on-disc in reciprocating mode, load 5 N, speed 5 cm/s, Ag-plated Cu-pin counter (\emptyset 10 mm)

Wear of Ag:GO composites sintered at 400°C

Smooth wear

Thin GO tribofilm

Compositional contrast images (BSE)

Narrow wear track,

6 mm

no wear debris

Ag:GO (0.5wt%)

©ABB May 17, 2018

Slide 19

200 µm

Thin GO tribofilm on counter surface Substantial reduction of wear

Wear Track

Wear of Ag:GO composites sintered at 400°C

Smooth wear

tribofilm 20 µm

Thin GO

Compositional contrast image (BSE)

Narrow wear track, no wear debris

Ag:GO (0.5wt%)

Wide wear track, wear debris

©ABB May 17, 2018

Bad case

Ag:GO (0.5wt%)

Slide 20

track

Irregular wear

Póor cohesion

Write something?

Electrical properties of Ag:GO composites

Cost of graphene-related materials

©ABB

]1] SIO Grafen leverantörsguide 2018-1; https://siografen.se/report/leverantorsguide/[2] http://northerngraphite.com/graphite-pricing/

Concluding remarks

Ag:GO composites show great promise as sliding electrical contact material

Purity and dispersion of GO is key to create a multifunctional material

More basic knowledge needed how composite microstructure and composition couples to tribological, electrical and mechanical properties

Product-related tests will be an important next step

THANK YOU FOR YOUR ATTENTION!

©**ABB** May 17, 2018

3 Slide 24